

3rd Integrated CNS Technologies Conference & Workshop

ATN Over IP Models for Evaluation

Crispin Netto

Computer Networks & Software, Inc.

Manu Khanna

Comptel, Inc.

May 20, 2003

7405 Alban Station Court, Suite B-225, Springfield, Virginia 22150-2318 (703) 644-2103

- ATN and Global Aviation
- ATN over IP ?
- Candidate Architecture's Transition Scenario
- Candidate Architecture Interoperability Scenario
- Evaluation Summary
- Conclusion

ATN and Global Aviation

- Global Aviation community employs an industry specific set of standards - ATN
- Comprises application entities and communication services that allow ground, air-to-ground, and avionics data subnetworks to interoperate.
- ATN provides the following data communication services:
 - Air Traffic Services Communication (ATSC)
 - Aeronautical Operational Control (AOC)
 - Aeronautical Administrative Communication (AAC)
 - Aeronautical Passenger Communication (APC)
- ATN utilizes the TP4/CLNP stack as designed in ISO

ATN over IP?

- Need for such a case
 - Operational benefits to aviation community
 - Manufacture of "All IP" aircraft by Airbus
 - Popular Internet applications can be leveraged
 - Widely used; Cost effective
- Is it Possible ?
 - Definitely! (We have developed a CPDLC over TCP/IP Test-Bed for NASA Glenn Research Center)
 - IP is the basis for cabin, file server systems
 - Gatelink uses an FDDI link with non-OSI protocols
 - IP Satellite Service
 - Eurocontrol's IPAX experiment
 - ARINC 664 developing specifications for use of non-OSI protocols in aviation infrastructure

Candidate Architecture's - Transition Scenario

- 3 different candidate architectures described
- Candidate Architecture 1
 - Transition Scenario Using Airborne Gateway
- Candidate Architecture 2
 - Transition Scenario Using Ground-based Gateway
- Candidate Architecture 3
 - Transition Scenario Using IP Subnetwork

 Dependent Convergence Function (IP SNDCF)

Transition Scenario Using Airborne Gateway

Accelerating CNS

Assumptions

- Aircraft network is IP based
- Ground systems are still ATN based
- Gateway function resides onboard the aircraft

CNS

Transition Scenario Using Airborne Gateway (cont..)

Accelerating CNS

Highlights

- Gateway function may be implemented at
 - the Application Layer (or)
 - the Transport Layer
- Preferred to implement Gateway at the Transport Layer
- ATN←→IP Address translation takes place only on the aircraft side
- No address translation required on the ground side

<u>Data Link</u> <u>Critical Aspects</u>

- Mobility
- Since the Gateway resides within the aircraft's onboard network, the TCP/IP stack will be independent of mobility aspects. The outer side of the Gateway, which uses TP4/CLNP will provide for mobility support in accordance with ATN SARPs.
- Security
- Provided as per ATN SARPs
- · QoS
- Provided as per ATN SARPs

Airborne Gateway at Transport Layer

Accelerating CNS

Gateway Functions

- Terminating TP4/CLNP on one side and translating that connection into TCP/IP on the other side and vice-versa
- Managing both TCP and TP4 termination points
- Address translation between the IP domain and the ATN domain

XPORT Switch

- A logical entity to provide "glue" logic or an interface for ATN upper layers to use TCP/IP services
- XPORT Switch should perform the following tasks:
 - Interface to upper layers
 - Address translation
 - Well-known port mapping
 - Interface to TCP/IP
- Mechanism to achieve ATN to IP address inter-working depends on whether the upper layers are aware of IP addresses or work strictly with ATN NSAPs. Two possible cases are:
 - IP addresses embedded in NSAP
 - ATN applications speak true NSAP
- Detailed information on the above 2 cases is available from:
 - IETF RFC 1888 "OSI NSAPs and IPv6"
 - IETF RFC 2373 "IPv6 Addressing Architecture"

Transition Scenario Using Ground-based Gateway

Accelerating CNS

Assumptions

- Aircraft network is IP based
- Ground based applications are TP4/CLNP based
- Gateway function resides as part of ground network

Transition Scenario Using Ground-based Gateway (cont..)

Accelerating CNS

Highlights

- Preferred to implement Gateway at the Transport Layer
- Gateway functionality similar to that illustrated in previous case
- ATN ←→IP Address translation takes place on the aircraft side, as well as the ground side

<u>Data Link</u> <u>Critical Aspects</u>

- Mobility
- Since the Gateway resides as part of the ground network, support for mobility is provided by Mobile IP
- Security
- Provided by IPSec
- · QoS
- Provided by employing Flows, DiffServ, RSVP

©NS

Transition Scenario Using IP SNDCF

Accelerating CNS

Assumptions

- Aircraft network is ATN based
- Gradual replacement of CLNP with IP on ground side
- IP SNDCF provides CLNP to IP protocol conversion

Transition Scenario Using IP SNDCF (cont..)

Accelerating CNS

Highlights

- ATN applications would continue to operate as currently defined
- No address translation issues, as ATN applications continue to "see" the familiar TP4/CLNP stack
- Ground network is IP based
- ATN ← → IP Address translation takes place only on the ground side

<u>Data Link</u> Critical Aspects

- Mobility
- Provided in accordance with ATN SARPs.
- Security
- Provided as per ATN SARPs
- · QoS
- Provided as per ATN SARPs

Candidate Architecture – Interoperability Scenario

- 1 Candidate Architecture described
 - Interoperability Scenario Using TCP/IPv6

Interoperability Scenario Using TCP/IPv6

- Major shift in technology from CLNP to IPv6
- **Assumptions**
- Aircraft network is IPv6 based
- Ground network is IPv6 based

Interoperability Scenario Using TCP/IPv6 (cont..)

Accelerating CNS

Highlights

- Three possible addressing options:
 - ATN applications use NSAPs as defined under ATN SARPs, but address translation is carried out at XPORT layer
 - ATN applications use IPv6 addresses embedded in NSAP structure
 - ATN applications use IPv6 addresses instead of NSAPs

<u>Data Link</u> <u>Critical Aspects</u>

- Mobility
- Provided by Mobile IPv6
- Security
- Provided by IPSec
- · QoS
- Provided by employing Flows, DiffServ, RSVP

Evaluation Summary

Transition Scenario Using Airborne Gateway	 Presents a transition scenario Mobility as in ATN SARPs Requires retrofits to avionics on every aircraft
Transition Scenario Using Ground-based Gateway	 Presents a transition scenario Mobility support by Mobile IP No retrofits to avionics required
Transition Scenario Using IP SNDCF	 Presents a transition scenario Mobility as in ATN SARPs ATN applications continue to operate as currently defined Impact on current ATN model appears to be minimal
Interoperability Scenario Using TCP/IPv6	 Major shift in technology Mobility support by Mobile IPv6 All systems are IPv6 based IPv6 provides a large address space IPv6 provides enhanced Security and QoS features

- Intent of this paper is to explore the design and development of candidate architectures to enable ATN applications to leverage the potential benefits of using the TCP/IP stack
- Paper presents three "Transition Scenario" candidate architectures, and one "Interoperability Scenario" candidate architecture
- Feasible models could be identified for further study and provide a guidance for transitioning of existing and future "non IP" based applications to the IP environment

Accelerating CNS

Computer Networks & Software, Inc.

Crispin Netto
703-644-2103
Crispin.Netto@cnsw.com
http://www.cnsw.com

Comptel, Inc.

Manu Khanna 703-644-2103 Mkhanna@comptelinc.com http://www.comptelinc.com